当前位置: 首页>博士论文>资源详情
拖曳阵阵形估计和细线拖曳阵子系统设计相关研究
中文摘要

拖曳阵自1917年首次研制以来,已经有超过100年的发展历史。鉴于其出色的低频和后视探测性能,以及受平台噪声干扰小等优点,拖曳阵在反潜探测系统中具有不可取代的地位。由于拖曳阵一般装置于小直径、自由柔性的圆柱体中,受到平台机动和振动,水流和洋流,以及阵列本身非零浮力和质量不均的影响,阵列形态在水中将无法保持直线状态,这将导致阵元位置的不确定,从而无法构造准确的阵列流形矢量,进一步使得后续的波束形成算法性能下降。因此,阵形估计在拖曳阵的实际应用中具有十分重要的地位。自1978年,陡度法作为拖曳阵阵形估计的方法被首次提出以来,阵形估计就一直贯穿于拖曳阵的相关研究中。算法理论的不断补充和物理建模的持续更新使得阵形估计的研究不断扩展,并为后续研究提供了坚实的基础。 本文基于非声阵形估计方法在实际应用中所面临的问题提出了相应的解决方案;同时对声学阵形估计方法的研究进行了综合分类;并结合无人平台的对拖曳阵阵形估计的新需求对阵形估计的研究方向进行了合理的展望;此外基于无人平台对于拖曳阵系统设计的新需求对细线拖曳阵子系统进行了相应的硬件上的改进;为完成系统中锁相环的设计需求对高阶高型锁相环进行了相关的研究分析。 本文研究内容安排如下: 第一章 绪论。阐明了拖曳阵阵形估计的研究背景和意义,详细介绍了拖曳阵阵形估计方法的国内外研究现状,并对拖曳阵阵形估计声学和非声学两类方法的发展历程进行了详细的介绍,结合目前拖曳阵阵形估计所面临的现状做了简单的发展研究方向分析,介绍了细线阵子系统相关的硬件和算法研究。最后简要介绍了本文的主要研究内容。 第二章 基础知识。介绍了拖曳阵阵形估计方法中常用的信号模型,以及相关的参数估计理论和卡尔曼滤波方法理论,对相关的参数意义,评价准则和模型应用做了简要介绍。 第三章 声学阵形估计方法研究。对阵形估计声学方法体系进行了详细的分类总结,给出了不同的方法体系的应用前提、限制以及具体的性能表现,并从物理建模和理论算法这两个方面进行了详细的分析。基于新的无人平台应用需求以及相关学科最新研究进展,对拖曳阵阵形估计声学方法的发展方向做了合理的展望。 第四章 非声阵型估计方法研究。简要介绍了基于水流动力模型、卡尔曼滤波器以及非声传感器的非声阵形估计方法。在此框架下,提出近似最优的深度传感器放置策略;结合水流动力学相关研究,推导出了有利于阵形估计的阵列尾端减震段最小长度 第五章 细线拖曳阵子系统相关设计与实现。基于拖曳阵深度传感器近似最优布放策略和减震段最小长度的推论我们对阵列进行了合理的阵列布局;介绍了基于无人平台的细线拖曳阵系统中相关子系统的硬件实现工作,根据无人平台提出的新需求,完成了数据传输节点的小型化,同步接收板更新,以及32路可扩展模拟信号发生器的设计工作;推导出在线性调频信号输入的情况下,四阶三型锁相环减小噪声性能最优,并给出该类型锁相环在最小均方误差情况下的系统闭环表达式;对细线拖曳阵负载于无人平台的实验结果进行了详细的分析,结果表明阵列性能良好,相较于预研细线拖曳阵系统有了进一步的提高。 第六章 总结与展望。总结了本文的主要研究成果和创新点,并结合研究现状以及研究应用背景,对研究发展方向进行了合理的展望。 关键词:声学阵形估计方法,非声阵形估计方法,非声传感器布放,减震段长度设计,数字锁相环

英文摘要

Since towed array was first invented in 1917, it has developed for over 100 years. As its extraordinary ability of low-frequency detection, back-vision detection, and the noise of platform, it is an essential part of the anti-submarine system. However, since all the array elements are placed in a slender free cylinder with small diameter, affected by the maneuver and vibration of towing platform, ocean currents and the mass inhomogeneity and non-zero buoyancy of the array itself, the array shape will no longer be the assumed straight, which results in the inaccuracy of the positions of array elements and the array manifold vector. The direct result is degradation of the following beamforming algorithms. Therefore, array shape estimation is extremely important in practice. Since using sharpness methods to estimate the shape of towed array was first brought up in 1978, the study of array shape estimation runs through the research of towed array. The continuous supplement of theoretical algorithms and renewal of physical model provide firm foundation and extend the space for the follow-up work on towed array shape estimation. This paper mainly focuses on solving the problems in practical applications of non acoustic array shape estimation methods, making comprehensive and classified description of acoustic towed array shape estimation methods, making reasonable expectation of the development of towed array shape estimation methods based on the new requirement of unmanned towing platform, and improvingthe hardware design of subsystems of thin towed array based on the application on unmanned platform, studying the digital phase-locked loop based on the requirement subsystems. The main conclusions and contributions are as follows: Chapter 1 demonstrates the backgrounds and meanings of the research on towed array shape estimation; introduces the current situation and development trend of this topic in detail, and presents the development of acoustic and non acoustic towed array shape estimation methods respectively; discusses the development direction of towed array based on its current application environment; presents the hardware work and algorithm study on thin towed array subsystems; and at last introduces the main research content of this paper. Chapter 2 presents the signal model commonly used in towed array shape estimation, relative parametric estimation theories, the theory of Kalman Filter, the meaning of relative parameters, evaluation criteria, and the application model. Chapter 3 describes acoustic towed array shape estimation methods in a comprehensive and classified way; extracts the preconditions, restrictions and performance of different kinds of acoustic methods; analyzing each kind of methods from the aspects of physical modeling of towed array and theoretical algorithms selecting; puts forward reasonable expectation of the direction of development of acoustic towed array shape estimation based on the new requirement of unmanned platform and new progress on relative research subjects. Chapter 4 introduces the non acoustic towed array shape estimation methods based on fluid mechanical model, Kalman Filter and non acoustic sensors; proposes the approximately optimal distribution of depth sensors; derives minimum length of damping section on towed array based on the newly proposed research of fluid mechanics. Chapter 5 designs the towed array based on the approximately optimal distribution of depth sensor and minimum length of damping section, introduces the realization work on hardware of subsystems of thin towed array based on unmanned platform, proves the fourth order and three type digital phase-locked loop is optimal on noise reduction when the input signal is linear chirp signal, analyze the experimental data of the improved thin towed array . Chapter 6 summarizes the research results and creative point of this paper; points out the direction of development of towed array shape estimation based on the current research situation and application backgrounds. Key Words: Acoustic towed array shape estimation methods, non acoustic towed array shape estimation methods, non acoustic sensor distribution, damping section, digital phase-locked loop

作者相关
主题相关
看过该书的人还在看哪些书